Professional vs Data Center

NVIDIA L40sVSNVIDIA H100

AI Benchmark Battle 2026

VS

NVIDIA L40s

Ada Lovelace
VRAM

48GB

ราคา

$8,000-10000

ประเภท

องค์กร

ระดับ

Professional

TDP: 350W

NVIDIA H100

Hopper
VRAM

80GB

ราคา

$25,000-30000

ประเภท

องค์กร

ระดับ

Data Center

TDP: 700W
หมายเหตุวิธีการทดสอบ

ระดับ Concurrency ต่างกัน

NVIDIA H100 ทดสอบที่ 128 concurrent requests (workload ระดับ datacenter) ขณะที่ NVIDIA L40s ทดสอบที่ 16 concurrent requests (โหลดทั่วไป) Concurrency สูงแสดง throughput แต่อาจไม่สะท้อน latency ของผู้ใช้เดี่ยว

LLM Inference

NVIDIA H100
Typhoon2.5-Qwen3-4Bยิ่งสูงยิ่งดี
NVIDIA H100
NVIDIA L40s1,523tok/s
NVIDIA H1009,931tok/s
GPT-OSS-20Bยิ่งสูงยิ่งดี
NVIDIA H100
NVIDIA L40s910tok/s
NVIDIA H1008,553tok/s
Qwen3-4B-Instruct-FP8ยิ่งสูงยิ่งดี
N/A
NVIDIA L40sN/A
NVIDIA H100N/A

Vision-Language

NVIDIA H100
Qwen3-VL-4Bยิ่งสูงยิ่งดี
NVIDIA H100
NVIDIA L40s1,050tok/s
NVIDIA H1007,790tok/s
Qwen3-VL-8Bยิ่งสูงยิ่งดี
NVIDIA H100
NVIDIA L40s746tok/s
NVIDIA H1007,035tok/s
Typhoon-OCR-3Bยิ่งสูงยิ่งดี
NVIDIA H100
NVIDIA L40s2,419tok/s
NVIDIA H10014,019tok/s

Image Generation

NVIDIA H100
Qwen-Imageยิ่งต่ำยิ่งดี
NVIDIA H100
NVIDIA L40s102.00sec
NVIDIA H10028.00sec
Qwen-Image-Editยิ่งต่ำยิ่งดี
NVIDIA H100
NVIDIA L40s104.00sec
NVIDIA H10029.00sec

Video Generation

NVIDIA H100
Wan2.2-5Bยิ่งต่ำยิ่งดี
NVIDIA H100
NVIDIA L40s412.00sec
NVIDIA H100180.00sec
Wan2.2-14Bยิ่งต่ำยิ่งดี
NVIDIA H100
NVIDIA L40s940.00sec
NVIDIA H100404.00sec

Speech-to-Text

NVIDIA H100
Typhoon-ASRยิ่งสูงยิ่งดี
NVIDIA H100
NVIDIA L40s0.364xx realtime
NVIDIA H1000.392xx realtime

วิเคราะห์ผู้ชนะ

เจาะลึกว่าทำไม GPU แต่ละตัวมีประสิทธิภาพต่างกันตามสเปคเทคนิค

สรุปการวิเคราะห์ทางเทคนิค

NVIDIA H100 wins 10 out of 10 benchmarks, excelling in LLM Inference and Vision-Language. Its HBM3 memory bandwidth provides a decisive advantage for AI inference workloads.

ความแตกต่างหลัก

  • NVIDIA L40s uses Ada Lovelace architecture while NVIDIA H100 uses Hopper
  • NVIDIA H100's HBM3 memory provides exceptional bandwidth for AI workloads

LLM Inference

NVIDIA H100

NVIDIA H100 wins in LLM inference because NVIDIA H100's superior memory bandwidth (3.4TB/s vs 864GB/s) enables faster token generation, and HBM3 memory provides exceptional bandwidth for memory-bound LLM operations.

สเปคสำคัญ
NVIDIA L40s|NVIDIA H100
Memory Bandwidth
864GB/s|3.4TB/s
VRAM
48GB|80GB
Memory Type
GDDR6|HBM3 (High Bandwidth)
Tensor Cores
4th Gen|4th Gen

Vision-Language

NVIDIA H100

NVIDIA H100 excels at vision-language tasks due to higher memory bandwidth accelerates image token processing, and more VRAM (80GB) handles larger image batches efficiently.

สเปคสำคัญ
NVIDIA L40s|NVIDIA H100
Memory Bandwidth
864GB/s|3.4TB/s
VRAM
48GB|80GB
Memory Type
GDDR6|HBM3 (High Bandwidth)
Tensor Cores
4th Gen|4th Gen

Image Generation

NVIDIA H100

NVIDIA H100 leads in image generation because faster memory enables quicker diffusion iterations, and Hopper architecture optimizations accelerate denoising operations.

สเปคสำคัญ
NVIDIA L40s|NVIDIA H100
Memory Bandwidth
864GB/s|3.4TB/s
VRAM
48GB|80GB
Memory Type
GDDR6|HBM3 (High Bandwidth)
Tensor Cores
4th Gen|4th Gen

Video Generation

NVIDIA H100

NVIDIA H100 dominates video generation with significantly more VRAM (80GB) maintains temporal coherence across frames, and 3.4TB/s bandwidth handles high-throughput video data.

สเปคสำคัญ
NVIDIA L40s|NVIDIA H100
Memory Bandwidth
864GB/s|3.4TB/s
VRAM
48GB|80GB
Memory Type
GDDR6|HBM3 (High Bandwidth)
Tensor Cores
4th Gen|4th Gen

Speech-to-Text

NVIDIA H100

NVIDIA H100 excels at speech-to-text because superior memory bandwidth enables faster audio feature processing, and 4th Gen Tensor Cores accelerate attention-based speech recognition.

สเปคสำคัญ
NVIDIA L40s|NVIDIA H100
Memory Bandwidth
864GB/s|3.4TB/s
VRAM
48GB|80GB
Memory Type
GDDR6|HBM3 (High Bandwidth)
Tensor Cores
4th Gen|4th Gen

ข้อมูลจำเพาะทางเทคนิค

NVIDIA L40s

สถาปัตยกรรมAda Lovelace
แบนด์วิธหน่วยความจำ864GB/s
ชนิดหน่วยความจำGDDR6
VRAM48GB
AV1 EncodeFP8 SupportMulti-Instance GPU

NVIDIA H100

สถาปัตยกรรมHopper
แบนด์วิธหน่วยความจำ3.4TB/s
ชนิดหน่วยความจำHBM3
VRAM80GB
Transformer EngineFP8 SupportNVLink 4.0

ผู้ชนะโดยรวม

NVIDIA H100

10 ชนะจาก 10 benchmarks

0

NVIDIA L40s

10

NVIDIA H100

NVIDIA L40s ข้อได้เปรียบ

  • -

NVIDIA H100 ข้อได้เปรียบ

  • More VRAM (80GB vs 48GB)
  • Strong in LLM Inference
  • Dominates in Vision-Language
  • Dominates in Image Generation

Frequently Asked Questions

NVIDIA H100 outperforms NVIDIA L40s in 10 out of 10 AI benchmarks. The NVIDIA H100's Hopper architecture features the Transformer Engine with FP8 precision, specifically designed for large language models and transformer-based AI workloads. With 3.4 TB/s memory bandwidth and 80GB HBM3 memory, it delivers superior throughput for AI inference workloads.

NVIDIA L40s has 48GB of GDDR6 memory with 864 GB/s bandwidth. NVIDIA H100 has 80GB of HBM3 memory with 3.4 TB/s bandwidth. NVIDIA H100's HBM3 memory provides exceptional bandwidth for memory-bound AI workloads like LLM inference.

NVIDIA H100 is faster for LLM inference. LLM performance is heavily dependent on memory bandwidth - NVIDIA H100's 3.4 TB/s HBM3 enables faster token generation compared to NVIDIA L40s's 864 GB/s.

NVIDIA L40s has a TDP of 350W while NVIDIA H100 has a TDP of 700W. NVIDIA L40s is more power efficient, making it suitable for deployments with power constraints. For cloud deployments, consider Float16.cloud where you can access these GPUs without managing power infrastructure.

NVIDIA L40s is priced around $8,000-10000 (enterprise/datacenter), while NVIDIA H100 costs approximately $25,000-30000 (enterprise/datacenter).

ลอง Float16 GPU Cloud

Run your AI workloads on high-performance GPUs with Float16 Cloud.