High-end vs Data Center

RTX 5080VSNVIDIA H100

AI Benchmark Battle 2026

VS

RTX 5080

Blackwell
VRAM

16GB

ราคา

$999-1100

ประเภท

ผู้บริโภค

ระดับ

High-End

TDP: 360W

NVIDIA H100

Hopper
VRAM

80GB

ราคา

$25,000-30000

ประเภท

องค์กร

ระดับ

Data Center

TDP: 700W
หมายเหตุวิธีการทดสอบ

ระดับ Concurrency ต่างกัน

NVIDIA H100 ทดสอบที่ 128 concurrent requests (workload ระดับ datacenter) ขณะที่ RTX 5080 ทดสอบที่ 16 concurrent requests (โหลดทั่วไป) Concurrency สูงแสดง throughput แต่อาจไม่สะท้อน latency ของผู้ใช้เดี่ยว

LLM Inference

NVIDIA H100
Typhoon2.5-Qwen3-4Bยิ่งสูงยิ่งดี
NVIDIA H100
RTX 50801,013tok/s
NVIDIA H1009,931tok/s
GPT-OSS-20Bยิ่งสูงยิ่งดี
NVIDIA H100
RTX 5080ไม่สามารถรันได้
NVIDIA H1008,553tok/s
Qwen3-4B-Instruct-FP8ยิ่งสูงยิ่งดี
N/A
RTX 5080N/A
NVIDIA H100N/A

Vision-Language

NVIDIA H100
Qwen3-VL-4Bยิ่งสูงยิ่งดี
NVIDIA H100
RTX 5080895tok/s
NVIDIA H1007,790tok/s
Qwen3-VL-8Bยิ่งสูงยิ่งดี
NVIDIA H100
RTX 5080403tok/s
NVIDIA H1007,035tok/s
Typhoon-OCR-3Bยิ่งสูงยิ่งดี
NVIDIA H100
RTX 5080394tok/s
NVIDIA H10014,019tok/s

Image Generation

NVIDIA H100
Qwen-Imageยิ่งต่ำยิ่งดี
NVIDIA H100
RTX 5080106.00sec
NVIDIA H10028.00sec
Qwen-Image-Editยิ่งต่ำยิ่งดี
NVIDIA H100
RTX 5080114.00sec
NVIDIA H10029.00sec

Video Generation

NVIDIA H100
Wan2.2-5Bยิ่งต่ำยิ่งดี
NVIDIA H100
RTX 5080712.00sec
NVIDIA H100180.00sec
Wan2.2-14Bยิ่งต่ำยิ่งดี
NVIDIA H100
RTX 50802067.00sec
NVIDIA H100404.00sec

Speech-to-Text

NVIDIA H100
Typhoon-ASRยิ่งสูงยิ่งดี
NVIDIA H100
RTX 50800.344xx realtime
NVIDIA H1000.392xx realtime

วิเคราะห์ผู้ชนะ

เจาะลึกว่าทำไม GPU แต่ละตัวมีประสิทธิภาพต่างกันตามสเปคเทคนิค

สรุปการวิเคราะห์ทางเทคนิค

NVIDIA H100 wins 10 out of 10 benchmarks, excelling in LLM Inference and Vision-Language. Its HBM3 memory bandwidth provides a decisive advantage for AI inference workloads.

ความแตกต่างหลัก

  • RTX 5080 uses Blackwell architecture while NVIDIA H100 uses Hopper
  • NVIDIA H100's HBM3 memory provides exceptional bandwidth for AI workloads
  • RTX 5080 offers consumer pricing vs NVIDIA H100's enterprise cost
  • NVIDIA H100 has 80GB VRAM for larger models

LLM Inference

NVIDIA H100

NVIDIA H100 wins in LLM inference because NVIDIA H100's superior memory bandwidth (3.4TB/s vs 960GB/s) enables faster token generation, and HBM3 memory provides exceptional bandwidth for memory-bound LLM operations.

สเปคสำคัญ
RTX 5080|NVIDIA H100
Memory Bandwidth
960GB/s|3.4TB/s
VRAM
16GB|80GB
Memory Type
GDDR7|HBM3 (High Bandwidth)
Tensor Cores
5th Gen|4th Gen

Vision-Language

NVIDIA H100

NVIDIA H100 excels at vision-language tasks due to higher memory bandwidth accelerates image token processing, and more VRAM (80GB) handles larger image batches efficiently.

สเปคสำคัญ
RTX 5080|NVIDIA H100
Memory Bandwidth
960GB/s|3.4TB/s
VRAM
16GB|80GB
Memory Type
GDDR7|HBM3 (High Bandwidth)
Tensor Cores
5th Gen|4th Gen

Image Generation

NVIDIA H100

NVIDIA H100 leads in image generation because faster memory enables quicker diffusion iterations, and Hopper architecture optimizations accelerate denoising operations.

สเปคสำคัญ
RTX 5080|NVIDIA H100
Memory Bandwidth
960GB/s|3.4TB/s
VRAM
16GB|80GB
Memory Type
GDDR7|HBM3 (High Bandwidth)
Tensor Cores
5th Gen|4th Gen

Video Generation

NVIDIA H100

NVIDIA H100 dominates video generation with significantly more VRAM (80GB) maintains temporal coherence across frames, and 3.4TB/s bandwidth handles high-throughput video data.

สเปคสำคัญ
RTX 5080|NVIDIA H100
Memory Bandwidth
960GB/s|3.4TB/s
VRAM
16GB|80GB
Memory Type
GDDR7|HBM3 (High Bandwidth)
Tensor Cores
5th Gen|4th Gen

Speech-to-Text

NVIDIA H100

NVIDIA H100 excels at speech-to-text because superior memory bandwidth enables faster audio feature processing, and 4th Gen Tensor Cores accelerate attention-based speech recognition.

สเปคสำคัญ
RTX 5080|NVIDIA H100
Memory Bandwidth
960GB/s|3.4TB/s
VRAM
16GB|80GB
Memory Type
GDDR7|HBM3 (High Bandwidth)
Tensor Cores
5th Gen|4th Gen

ข้อมูลจำเพาะทางเทคนิค

RTX 5080

สถาปัตยกรรมBlackwell
แบนด์วิธหน่วยความจำ960GB/s
ชนิดหน่วยความจำGDDR7
VRAM16GB
DLSS 4Multi Frame Generation

NVIDIA H100

สถาปัตยกรรมHopper
แบนด์วิธหน่วยความจำ3.4TB/s
ชนิดหน่วยความจำHBM3
VRAM80GB
Transformer EngineFP8 SupportNVLink 4.0

ผู้ชนะโดยรวม

NVIDIA H100

10 ชนะจาก 10 benchmarks

0

RTX 5080

10

NVIDIA H100

RTX 5080 ข้อได้เปรียบ

  • Significantly lower cost
  • Easier availability

NVIDIA H100 ข้อได้เปรียบ

  • More VRAM (80GB vs 16GB)
  • Strong in LLM Inference
  • Dominates in Vision-Language
  • Dominates in Image Generation

Frequently Asked Questions

NVIDIA H100 outperforms RTX 5080 in 10 out of 10 AI benchmarks. The NVIDIA H100's Hopper architecture features the Transformer Engine with FP8 precision, specifically designed for large language models and transformer-based AI workloads. With 3.4 TB/s memory bandwidth and 80GB HBM3 memory, it delivers superior throughput for AI inference workloads.

RTX 5080 has 16GB of GDDR7 memory with 960 GB/s bandwidth. NVIDIA H100 has 80GB of HBM3 memory with 3.4 TB/s bandwidth. NVIDIA H100's HBM3 memory provides exceptional bandwidth for memory-bound AI workloads like LLM inference.

NVIDIA H100 is faster for LLM inference. LLM performance is heavily dependent on memory bandwidth - NVIDIA H100's 3.4 TB/s HBM3 enables faster token generation compared to RTX 5080's 960 GB/s.

RTX 5080 has a TDP of 360W while NVIDIA H100 has a TDP of 700W. RTX 5080 is more power efficient, making it suitable for deployments with power constraints. For cloud deployments, consider Float16.cloud where you can access these GPUs without managing power infrastructure.

RTX 5080 is priced around $999-1100 (consumer market), while NVIDIA H100 costs approximately $25,000-30000 (enterprise/datacenter). Note that RTX 5080 is a consumer GPU while NVIDIA H100 is an enterprise solution with different support and warranty terms.

ลอง Float16 GPU Cloud

Run your AI workloads on high-performance GPUs with Float16 Cloud.